Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37028315

RESUMEN

This study presents a method for noninvasive pressure gradient estimation, which allows the detection of small pressure differences with higher precision compared to invasive catheters. It combines a new method for estimating the temporal acceleration of the flowing blood with the Navier-Stokes equation. The acceleration estimation is based on a double cross-correlation approach, which is hypothesized to minimize the influence of noise. Data are acquired using a 256-element, 6.5-MHz GE L3-12-D linear array transducer connected to a Verasonics research scanner. A synthetic aperture (SA) interleaved sequence with 2 ×12 virtual sources evenly distributed over the aperture and permuted in emission order is used in combination with recursive imaging. This enables a temporal resolution between correlation frames equal to the pulse repetition time at a frame rate of half the pulse repetition frequency. The accuracy of the method is evaluated against a computational fluid dynamic simulation. Here, the estimated total pressure difference complies with the CFD reference pressure difference, which yields an R -square of 0.985 and an RMSE of 3.03 Pa. The precision of the method is tested on experimental data, measured on a carotid phantom of the common carotid artery. The volume profile used during measurement was set to mimic flow in the carotid artery with a peak flow rate of 12.9 mL/s. The experimental setup showed that the measured pressure difference changes from -59.4 to 31 Pa throughout a single pulse cycle. This was estimated with a precision of 5.44% (3.22 Pa) across ten pulse cycles. The method was also compared to invasive catheter measurements in a phantom with a 60% cross-sectional area reduction. The ultrasound method detected a maximum pressure difference of 72.3 Pa with a precision of 3.3% (2.22 Pa). The catheters measured a maximum pressure difference of 105 Pa with a precision of 11.2% (11.4 Pa). This was measured over the same constriction and with a peak flow rate of 12.9 mL/s. The double cross-correlation approach revealed no improvement compared to a normal differential operator. The method's strength, thus, lies primarily in the ultrasound sequence, which allows precise and accurate velocity estimations, at which acceleration and pressure differences can be acquired.


Asunto(s)
Arterias Carótidas , Arteria Carótida Común , Velocidad del Flujo Sanguíneo , Arterias Carótidas/diagnóstico por imagen , Ultrasonografía/métodos , Arteria Carótida Común/diagnóstico por imagen , Presión , Presión Sanguínea
2.
Artículo en Inglés | MEDLINE | ID: mdl-32804649

RESUMEN

This article presents an imaging scheme capable of estimating the full 3-D velocity vector field in a volume using row-column addressed arrays (RCAs) at a high volume rate. A 62 + 62 RCA array is employed with an interleaved synthetic aperture sequence. It contains repeated emissions with rows and columns interleaved with B-mode emissions. The sequence contains 80 emissions in total and can provide continuous volumetric data at a volume rate above 125 Hz. A transverse oscillation cross correlation estimator determines all three velocity components. The approach is investigated using Field II simulations and measurements using a specially built 3-MHz 62 + 62 RCA array connected to the SARUS experimental scanner. Both the B-mode and flow sequences have a penetration depth of 14 cm when measured on a tissue-mimicking phantom (0.5-dB/[ [Formula: see text]] attenuation). Simulations of a parabolic flow in a 12-mm-diameter vessel at a depth of 30 mm, beam-to-flow angle of 90°, and xy-rotation of 45° gave a standard deviation (SD) of (3.3, 3.4, 0.4)% and bias of (-3.3, -3.9, -0.1)%, for ( vx , vy , and vz ). Decreasing the beam-to-flow angle to 60° gave an SD of (8.9, 9.1, 0.8)% and bias of (-7.6, -9.5, -7.2)%, showing a slight increase. Measurements were carried out using a similar setup, and pulsing at 2 kHz yielded comparable results at 90° with an SD of (5.8, 5.5, 1.1)% and bias of (1.4, -6.4, 2.4)%. At 60°, the SD was (5.2, 4.7 1.2)% and bias (-4.6, 6.9, -7.4)%. Results from measurements across all tested settings showed a maximum SD of 6.8% and a maximum bias of 15.8% for a peak velocity of 10 cm/s. A tissue-mimicking phantom with a straight vessel was used to introduce clutter, tissue motion, and pulsating flow. The pulsating velocity magnitude was estimated across ten pulse periods and yielded an SD of 10.9%. The method was capable of estimating transverse flow components precisely but underestimated the flow with small beam-to-flow angles. The sequence provided continuous data in both time and space throughout the volume, allowing for retrospective analysis of the flow. Moreover, B-mode planes can be selected retrospectively anywhere in the volume. This shows that tensor velocity imaging (full 3-D volumetric vector flow imaging) can be estimated in 4-D ( x, y, z, and t ) using only 62 channels in receive, making 4-D volumetric imaging implementable on current scanner hardware.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...